[1] 丁保华,李占芳.齿轮箱故障诊断中振动信号处理方法综述[J].煤矿机械,2005,26(8):136-138.[2] Yu W, Zhao C. Online Fault Diagnosis for Industrial Processes With Bayesian Network-Based Probabilistic Ensemble Learning Strategy[J]. IEEE transactions on automation science and engineering, 2019, 16(4):1922-1932.[3] 刘洋. 行星齿轮箱故障诊断技术的研究进展[J]. 内燃机与配件, 2018(18): 154-155.[4] 李淼. 基于机器学习的齿轮箱故障诊断研究[D]. 北京:北京交通大学, 2020.[5] Dadon I, Koren N, Klein R, et al. A realistic dynamic model for gear fault diagnosis[J]. Engineering Failure Analysis, 2018, 84:77-100.[6] Zhang X, Liu Z, Miao Q, et al. An optimized time varying filtering based empirical mode decomposition method with grey wolf optimizer for machinery fault diagnosis[J]. Journal of Sound and Vibration, 2018, 418:55-78.[7] Liu Y, Mu Y, Chen K, et al. Daily activity feature selection in smart homes based on pearson correlation coefficient[J]. Neural Processing Letters, 2020, 51: 1771-1787.[8] Lin J. Divergence measures based on the Shannon entropy[J]. IEEE Transactions on Information Theory, 1991, 37(1): 145-151.[9] Liu R, Yang B, Zio E, et al. Artificial intelligence for fault diagnosis of rotating machinery: A review[J]. Mechanical Systems and Signal Processing, 2018, 108: 33-47.[10] Wang C, Li H, Zhang K, et al. Intelligent fault diagnosis of planetary gearbox based on adaptive normalized CNN under complex variable working conditions and data imbalance[J]. Measurement, 2021, 180: 109565.[11] 陈雪峰,郭艳婕,许才彬,等.风电装备故障诊断与健康监测研究综述[J]. 中国机械工程, 2020, 31(02): 175-189.[12] 赵昕海,张术臣,李志深,等.基于VMD的故障特征信号提取方法[J].振动、测试与诊断,2018,38(1):11-19.[13] 付 宇,殷逸冰,左洪福.一种基于稀疏分解的静电信号去噪方法[J].航空动力学报,2018,33(11):10-19.[14] Van Houdt G, Mosquera C, Nápoles G. A review on the long short-term memory model[J]. Artificial Intelligence Review, 2020, 53: 5929-5955.[15] Sherstinsky A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network[J]. Physica D: Nonlinear Phenomena, 2020, 404(8): 132306.[16] Yu J, He Y. Planetary gearbox fault diagnosis based on data-driven valued characteristic multigranulation model with incomplete diagnostic information[J]. Journal of Sound & Vibration, 2018, 429:63-77.[17] 杨佳鑫,齐蕴光,蔡兆中.齿轮箱故障诊断技术现状与发展趋势[J].机电信息,2011(36):133-134.[18] 雷亚国, 何正嘉, 林京, 等. 行星齿轮箱故障诊断技术的研究进展[J]. 机械工程学报, 2011, 47(19): 59-67.[19] Wang J, Li and R, Peng X. Survey of nonlinear vibration of gear transmission systems[J]. Appl. Mech. Rev., 2003, 56(3): 309-329.[20] Grover C, Turk N. Rolling element bearing fault diagnosis using empirical mode decomposition and hjorth parameters[J]. Procedia Computer Science, 2020, 167: 1484-1494.[21] Shao H D, Jiang H K, Li X Q, et al. Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine[J]. Knowledge-Based Systems, 2018, 140: 1-14.[22] Zhang Z, Zhang L, Fu M, et al. Study on leak localization for buried gas pipelines based on an acoustic method[J]. Tunnelling and Underground Space Technology, 2022, 120: 104-247.[23] Liao Z, Yan H, Tang Z, et al. Deep learning identifies leak in water pipeline system using transient frequency response[J]. Process Safety and Environmental Protection, 2021, 155: 355-365.[24] Li J, Chen Y, Qian Z, et al. Research on VMD based adaptive denoising method applied to water supply pipeline leakage location[J]. Measurement, 2020, 151: 107-153. |